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Controlling spatiotemporal chaos in coupled map lattices
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A simple method is presented for controlling spatiotemporal chaos in coupled map lattices to a homoge-
neous state. This method can be applied to many kinds of models such as coupled map lattices~CML!,
one-way open CML~the open-flow model!, and globally coupled map. We offer the stability analysis of the
homogeneous state. Simple and sufficient conditions are obtained for controlling the above mentioned models.
Our theoretical results agree well with numerical simulations.
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I. INTRODUCTION

Coupled map lattices~CML! are often used as a conve
nient model to study characteristics of real spatiotempo
systems@1,2#. Different models have been proposed acco
ing to different kinds of couplings. There are many choic
for the coupling. The first choice is to choose symmet
coupling or asymmetric coupling@2#. Much work has been
done on the symmetric coupling@3#. An extreme asymmetric
case that has attracted much interest is one way-open C
@4# corresponding to open-flow systems. Another choice
coupling is to choose local coupling or global coupling. T
models mentioned above are all locally coupled models.
globally coupled map~GCM! was introduced by Kaneko
@5,6# for the investigation of certain interesting dynamic
properties such as clustering of synchronization.

Suppression of spatiotemporal chaotic behavior is an
portant subject due to its possible applications in plas
laser devices, turbulence, chemical and biological syste
Various techniques were proposed. Astakhovet al. @7# pro-
posed a method for controlling chain of logistic maps on
basis of the Ott-Grebogi-Yorke~OGY! approach@17#. Auer-
bach showed how an unsymmetrical CML can be contro
to behave periodically by the distributed controllers at s
eral spatial locations@8#. The feedback pinning technique fo
controlling the CML was discussed@9,10#. Parmanandaet al.
@11# discussed several techniques based on delayed-feed
methods. Konishi et al. @12# described a decentralize
delayed-feedback control for a one-way open CML.

In the present paper we use a method that was used e
by de Sousa Vieira and Lichtenberg@13# and later by Huang
@14# to control coupled map lattices. Our results show t
this method works successfully in spatiotemporal chao
systems as well as in low-dimensional temporal chaotic s
tems. We successfully controlled spatiotemporal chaos
several kinds of models: symmetric coupled CML, asymm
ric coupled CML ~including one-way open CML!, and
GCM. Stability analysis was presented for the homogene
state where all sites are equal to the fixed point of the lo
map. We obtained simple and sufficient conditions for co
trolling the systems. Numerical simulations agree well w
theoretical results. Our method has the following advantag
~1! spatiotemporal chaos can be controlled without any p
1063-651X/2001/63~6!/067201~4!/$20.00 63 0672
al
-
s
c

L
f

e

l

-
a,
s.

e

d
-

ack

lier

t
c
s-
in
t-

us
al
-

s:
r

knowledge of the local map,~2! the controlling for every site
does not need information from other sites.

II. CONTROLLING SPATIOTEMPORAL CHAOS
TO THE HOMOGENEOUS STATE

In the present paper we discuss both CML and GCM f
lowing by Kaneko@2,5#

xn11
i 5~12«! f ~xn

i !1«@~12a! f ~xn
i 21!1a f ~xn

i 11!#,
~1!

xn11
i 5~12«! f ~xn

i !1
«

N (
j 51

N

f ~xn
j !, ~2!

wheren is the discrete time step,i and j are the lattice sites
xn

i is the system state,N is the system size,«P(0,1) is the
coupling strength,aP@0,1# is a parameter controlling the
symmetry of coupling, andf (x)512ax2 is the logistic map.
Parametera is fixed to 1.9 in numerical simulations of thi
paper.

Equation~1! is a quite general model. Leta5 1
2 we get

the ordinary symmetric coupled CML, otherwise we g
asymmetric coupled CML. An extreme case of asymme
coupling is one-way open CML by choosinga50.

Our goal is to control spatiotemporal chaos in CML a
GCM to a homogeneous state

~xn
1 ,xn

2 , . . . ,xn
N!T5~xf ,xf , . . . ,xf !

T,

where xf is the fixed point of the local mapf, that is, xf
5 f (xf). In order to do this, we add a control term that
based on the controlling method of de Sousa Vieira and
chtenberg@13# and Huang@14# to the right-hand side of Eq
~1!, Eq. ~2!,

xn11
i 5~12«! f ~xn

i !1«@~12a! f ~xn
i 21!1a f ~xn

i 11!#

2g„f ~xn
i !2xn

i
…, ~3!

xn11
i 5~12«! f ~xn

i !1
«

N (
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N

f ~xn
j !2g„f ~xn

i !2xn
i
… ~4!
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It is obvious that the control term does not change the fi
points of the original systems.

Next we will analyze the stability of Eq.~3! and Eq.~4! to
show that the homogeneous state becomes stable whe
controlling term is switched on.

A. The stability analysis of CML

The stability of Eq.~3! at the homogeneous state depen
on the eigenvalues of its Jacobian matrix. Since the bound
conditions affect the Jacobian matrix, we choose a fix
boundary conditions in this section in order to simplify th
oretical analysis. Fixed boundary condition means thatxn

0

andxn
N11 are fixed atxn

05xn
N115xf . The effect of boundary

conditions will be discussed in the Sec. III.
From Eq.~3! we have

]xn11
i

]xn
j

55
«~12a!L for j 5 i 21

~12«!L2g~L21! for j 5 i

«aL for j 5 i 11

0 for u j 2 i u.1,

where L[@] f (x)#/]xux5xf
. Let A[(12«)L2g(L21),

B[«(12a)L, C[«aL and denoteM (Xf) as the Jacobian
matrix of Eq.~3! at the homogeneous state, we have

M ~Xf !5S A C 0 ••• 0 0

B A C ••• 0 0

0 B A ••• 0 0

A A A � A A

0 0 0 ••• A C

0 0 0 ••• B A

D .

The deduction of the eigenvalues ofM (Xf) can be found in
books for numerical solution of partial differential equatio
@15#. The eigenvalues of Jacobian matrixM (Xf) is,

l i5A12ABCcos
ip

N11
, where i 51,2, . . . ,N.

WhenN is large,

lmin[min~l1 ,l2 , . . . ,lN!'A22ABC, ~5!

lmax[max~l1 ,l2 , . . . ,lN!'A12ABC. ~6!

A stable homogeneous state requiresul i u,1 for all i. This
requirement is an equivalence of

H lmin.21

lmax,1.
~7!

SinceL,(21) for logistic map, Eq.~5!, Eq. ~6!, and Eq.
~7! lead to
06720
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212~12«!L12«uLuAa~12a!

12L
,g

,
12~12«!L22«uLuAa~12a!

12L
. ~8!

This is a sufficient condition for a stable homogeneous st
Once we know the values ofa and «, we can choose

controlling parameterg according to the above inequalit
~8!. For example, ifa51.9, «50.1, anda50.25, inequality
~8! means 0.3092,g,0.8770. This means that onceg is
chosen in (0.3092,0.8770), the homogeneous state beco
stable when the controlling term is switched on. Figure
shows the numerical simulations with the controlling para
eter g50.38. After the controlling term is switched on, th
spatiotemporal chaotic behavior in the asymmetric coup
CML soon turns to the homogeneous state.

Inequality ~8! gives the way to choose appropriate co
trolling parameter for successfully controlling spatiotempo
chaos. A better understanding of inequality~8! is a graph.
The region between the two lines in Fig. 2 is the sta
region satisfying inequality~8!. The result of numerical

FIG. 1. Controlling of asymmetric coupled CML witha51.9,
«50.1, g50.38, a50.25, N5100 starting from a random initia
condition. Controlling is switched on atn53000.~a! Site-time step
diagram. Pixels are painted black ifxn

i .0.508, and white otherwise
Every eighth step is plotted along the time axis.~b! Amplitude-time
step diagram. The values of all sites are plotted, that isi
51,2, . . .,100 inxn

i .
1-2
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simulations is also showed in the same figure. The dots in
figure are the parameters that were controlled to the ho
geneous state. Theoretical result agrees well with nume
simulation for the asymmetric coupled CML witha50.25.

We have showed that our controlling method works w
for a asymmetric coupled CML witha50.25. Controlling
for other cases are also successful. However, in considera
of brevity we would not present the numerical results
other cases such as symmetric coupled CML, one-way o
CML, etc.

B. The stability analysis of GCM

The stability of Eq.~4! at the homogeneous state depen
on the eigenvalues of its Jacobian matrix. From Eq.~4! we
have

]xn11
i

]xn
j

5H ~12«!L2g~L21!1
«

N
L for j 5 i

«

N
L for j Þ i ,

where L[@] f (x)#/]xux5xf
. Let A[(12«)L2g(L21),

B[«/NL, and denoteM (Xf) as the Jacobian matrix of Eq
~4! at the homogeneous state, we have

M ~Xf !5S A1B B B ••• B

B A1B B ••• B

B B A1B ••• B

A A A � A

B B B ••• A1B

D .

FIG. 2. Stable region of asymmetric coupled CML for the h
mogeneous state. The region between the two lines is the s
region of the theoretical result. The dots in the figure are the
rameters that were controlled to the homogeneous state by num
simulation. Calculation was carried out by dividing the (0,
3(0,1) region of theg2« plane into 40340 grid for calculation.
The other parameters area51.9, a50.25,N5100. The initial con-
dition is 0.8 sin„2p( i 21)/N…. Controlling is switched on atn
52500. Data are obtained aftern59990.
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The characteristic polynomial ofM (Xf) is ulI 2M (Xf)u. It
is easy to calculate it~We can first multiply the last row by
(21) and add it to other lines. Then we add colum
1,2, . . . ,N21 to columnN.! So the eigenvalues ofM (Xf)
are

l15l25•••5lN215A5~12«!L2g~L21! ~9!

and

lN5A1NB5L2g~L21!. ~10!

A stable homogeneous states means thatul i u,1 for all i. So
we get

H u~12«!L2g~L21!u,1

uL2g~L21!u,1.
~11!

We choose«P(0,1). For logistic map,L,21. Solving Eq.
~11! under these two conditions, we have

212L

12L
,g,

12~12«!L

12L
. ~12!

This is the condition of stable homogeneous state of GC
The parameter satisfying the above inequality is the area
tween the two lines in Fig. 3.

Figure 3 also shows the numerical result of GCM. T
dots in the figure are the parameters that were controlle
stable homogeneous state. An interesting thing is that we
an extra stable region that locates outside the theore
stable region. The reason is the following. When« is large,
the system soon reaches a state where all sites are e
before the controlling term is switched on. This state w
called coherent phase by Kaneko@5#. The sites in this state
act as uncoupled maps. In this simple uncoupled case,
controlling method is the same as those in Refs.@13# and
@14#. Every site is controlled to the fixed point with no inte
action from other sites.

ble
-
ral

FIG. 3. Stable region of GCM for the homogeneous state. T
region between the two lines is the stable region of the theore
result. The dots in the figure are the parameters that were contro
to the homogeneous state. Parameters are the same as Fig. 2
a, which is not used in GCM.
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III. DISCUSSION AND CONCLUSION

Numerical results show that our controlling method c
control spatiotemporal chaos in different boundary con
tions such as fixed boundary condition, periodic bound
condition, etc. Since Jacobian matrix is slightly different f
different boundary conditions, the eigenvalues vary for d
ferent boundary conditions. A useful tool to estimate eig
values is theGeršgorin disks theorem@16# in matrix theory.
It tells us that all the eigenvalues of a matrix locate in so
regions. We require that all the regions lie in (21,1). This
requirement leads to an inequality just like inequality~8! for
successful controlling.

TheGeršgorin disks theorem also shows that as long a
boundary does not give out large stimulation, it does
s

E

ev
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change eigenvalues of Eq.~3! and Eq.~4! in (21,1) to the
region outside of (21,1). Since many boundaries do not giv
out large stimulation comparing to the coupling, our contr
ling method works well in these boundary conditions.

We successfully use a simple method to control symm
ric coupled CML, asymmetric coupled CML, and global
coupled map~GCM!. Simple and sufficient conditions ar
obtained for controlling these models to the homogene
state.
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