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Controlling spatiotemporal chaos in coupled map lattices
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A simple method is presented for controlling spatiotemporal chaos in coupled map lattices to a homoge-
neous state. This method can be applied to many kinds of models such as coupled map(Gitticgs
one-way open CML(the open-flow modg] and globally coupled map. We offer the stability analysis of the
homogeneous state. Simple and sufficient conditions are obtained for controlling the above mentioned models.
Our theoretical results agree well with numerical simulations.
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I. INTRODUCTION knowledge of the local mag2) the controlling for every site
does not need information from other sites.

Coupled map latticesCML) are often used as a conve-
nient model to study characteristics of real spatiotemporal || cONTROLLING SPATIOTEMPORAL CHAOS
systemd1,2]. Different models have been proposed accord- TO THE HOMOGENEOUS STATE
ing to different kinds of couplings. There are many choices .
for the coupling. The first choice is to choose symmetric N the present paper we discuss both CML and GCM fol-
coupling or asymmetric couplinf2]. Much work has been 0Wing by Kaneko[2,5]
done on the symmetric coupliig]. An extreme asymmetric , : _— 1
case that has attracted much interest is one way-open CML Xn+1=(1=&)f(Xp) +e[(1—a)f(x, *) +af(x )],
[4] corresponding to open-flow systems. Another choice of )
coupling is to choose local coupling or global coupling. The

models mentioned above are all locally coupled models. The P i € % i

globally coupled map(GCM) was introduced by Kaneko Xn+1_(1_8)f(xn)+ﬁj:1 fxn), )
[5,6] for the investigation of certain interesting dynamical

properties such as clustering of synchronization. wheren is the discrete time step,andj are the lattice sites,

Suppression of spatiotemporal chaotic behavior is an ims(in is the system staté is the system sizes e (0,1) is the
portant subject due to its possible applications in plasmamup”ng strengthw <[0,1] is a parameter controlling the
laser devices, turbulence, chemical and biological SyStem%ymmetry of coupling, anéi(x) = 1— ax? is the logistic map.
Various techniques were proposed. Astakfetal. [7] pro-  parameten is fixed to 1.9 in numerical simulations of this
posed a method for controlling chain of logistic maps on thepaper.
basis of the Ott-Grebogi-York€OGY) approact{17]. Auer- Equation(1) is a quite general model. Lei=3 we get
bach showed how an unsymmetrical CML can be controlledhe ordinary symmetric coupled CML, otherwise we get
to behave periodically by the distributed controllers at sev-asymmetric coupled CML. An extreme case of asymmetric
eral spatial locationf3]. The feedback pinning technique for coupling is one-way open CML by choosinag=0.
controlling the CML was discuss¢8,10]. Parmanandat al. Our goal is to control spatiotemporal chaos in CML and
[11] discussed several techniques based on delayed-feedba@GkCcM to a homogeneous state
methods. Konishiet al. [12] described a decentralized
delayed-feedback control for a one-way open CML. (x

In the present paper we use a method that was used earlier
by de Sousa Vieira and LichtenbeitB] and later by Huang where x; is the fixed point of the local maf that is, X;

[14] to control coupled map lattices. Our results show that—(x.). In order to do this, we add a control term that is
this method works successfully in spatiotemporal chaotigased on the controlling method of de Sousa Vieira and Li-

systems as well as in low-dimensional temporal chaotic syschtenber 13] and Huang 14] to the right-hand side of Eq.
tems. We successfully controlled spatiotemporal chaos iny) Eq.(2),
several kinds of models: symmetric coupled CML, asymmet-

1,2

N\T T
RaXny e Xn) = (X, X, e X))

ric coupled CML (including one-way open CM),. and o (1— eV (X e[ (1— a)F 1) + af(xi L
GCM. Stability analysis was presented for the homogeneous Xn1=(1=e)T0q) +el(1=a)tOq )+ at (4]
state where all sites are equal to the fixed point of the local —y(f(x)—x"), 3

map. We obtained simple and sufficient conditions for con-

trolling the systems. Numerical simulations agree well with N

theoretical results. Our method has the following advantages: i _ 1 _ oyf(x +i FOxd) — v(F(X) — X 4
(1) spatiotemporal chaos can be controlled without any prior ne1= (17 e) )+ g 121 () = 7(F o) =n) - (4)
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It is obvious that the control term does not change the fixed
points of the original systems.

Next we will analyze the stability of Eq3) and Eq.(4) to
show that the homogeneous state becomes stable when the
controlling term is switched on.

A. The stability analysis of CML

The stability of Eq.(3) at the homogeneous state depends
on the eigenvalues of its Jacobian matrix. Since the boundary
conditions affect the Jacobian matrix, we choose a fixed
boundary conditions in this section in order to simplify the-
oretical analysis. Fixed boundary condition means bkﬁat
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conditions will be discussed in the Sec. Ill.
From Eq.(3) we have

e(l—a)A for j=i—1

M1 | (L—e)A=y(A=1) for j=i

oxi | eaA for j=i+1
0 for |j—i|>1,

where Az[af(x)]/ﬁx|xzxf. Let A=(1-&e)A—y(A-1),

B=e(l—a)A, C=egaA and denotM (X;) as the Jacobian

matrix of Eq.(3) at the homogeneous state, we have

A C O 0 O
A 0 O
B A 0 0
M(X¢)=
o o o --- A C
O o o --- B A

The deduction of the eigenvalues Mf(X;) can be found in
books for numerical solution of partial differential equations

[15]. The eigenvalues of Jacobian mathk(X;) is,

i
Ni=A+ 2\/BCCOW, wherei=1,2,... N.

WhenN is large,

An)~A—24BC, (5)

Nmin=mMin(\ 1,2, ...

)\maxzma)(y\l,)\z, PR ’)\N)%A+2\ BC. (6)

A stable homogeneous state requifeg<1 for all i. This
requirement is an equivalence of

Nmin> — 1
Mnax< 1.

(@)

Since A<(—1) for logistic map, Eq(5), Eq. (6), and Eq.
(7) lead to

are fixed a®=xN"1=x; . The effect of boundary

2500 8000 3500
Time Step n

3hoo 4000

(b)

FIG. 1. Controlling of asymmetric coupled CML with=1.9,
e=0.1, y=0.38, =0.25, N=100 starting from a random initial
condition. Controlling is switched on at=3000.(a) Site-time step
diagram. Pixels are painted black«{f>0.508, and white otherwise.
Every eighth step is plotted along the time axt®. Amplitude-time
step diagram. The values of all sites are plotted, thatiis,
=1,2,...,100 inx},.

—1—(1—8)A+28|A|\/a(l—a)
1-A

1—(1—8)A—28|A|\/a(1—a)
< 1-A .

()

This is a sufficient condition for a stable homogeneous state.

Once we know the values & and &, we can choose
controlling parametery according to the above inequality
(8). For example, ifa=1.9, e=0.1, anda=0.25, inequality
(8) means 0.3092 y<<0.8770. This means that once is
chosen in (0.3092,0.8770), the homogeneous state becomes
stable when the controlling term is switched on. Figure 1
shows the numerical simulations with the controlling param-
eter y=0.38. After the controlling term is switched on, the
spatiotemporal chaotic behavior in the asymmetric coupled
CML soon turns to the homogeneous state.

Inequality (8) gives the way to choose appropriate con-
trolling parameter for successfully controlling spatiotemporal
chaos. A better understanding of inequali8) is a graph.
The region between the two lines in Fig. 2 is the stable
region satisfying inequality(8). The result of numerical
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FIG. 2. Stable region of asymmetric coupled CML for the ho-  FIG. 3. Stable region of GCM for the homogeneous state. The
mogeneous state. The region between the two lines is the stabtegion between the two lines is the stable region of the theoretical
region of the theoretical result. The dots in the figure are the paresult. The dots in the figure are the parameters that were controlled
rameters that were controlled to the homogeneous state by numer@a the homogeneous state. Parameters are the same as Fig. 2 except
simulation. Calculation was carried out by dividing the (0,1) «, which is not used in GCM.

X (0,1) region of they—¢ plane into 4040 grid for calculation.

The other parameters age- 1.9, «=0.25,N=100. The initial con- ~ The characteristic polynomial d¥l(X;) is [\ 1 =M (X;)|. It

dition is 0.8sif2(i—1)/N). Controlling is switched on ah s easy to calculate ifWe can first multiply the last row by

=2500. Data are obtained after=9990. (—1) and add it to other lines. Then we add column
1,2,... N—1 to columnN.) So the eigenvalues d#l (X;)

simulations is also showed in the same figure. The dots in thare

figure are the parameters that were controlled to the homo-

geneous state. Theoretical result agrees well with numerical ~ A1=XAp=---=Ay-1=A=(1—-e)A—y(A-1) (9

simulation for the asymmetric coupled CML with= 0.25.

We have showed that our controlling method works welland
for a asymmetric coupled CML witlw=0.25. Controlling
for other cases are also successful. However, in consideration
of brevity we would not present the numerical results of .
other cages such as symrrrietric coupled CML, one-way ope’%‘ stable homogeneous states means flgt<1 for alli. So
CML, etc. we get

An=A+NB=A—y(A—1). (10)

[(1-e)A=y(A-1)[<1
B. The stability analysis of GCM [A—y(A-1)|<1. A

The stability of Eq.(4) at the homogeneous state depends _ .
on the eigenvalues of its Jacobian matrix. From @y.we Ve choose e (0,1). For logistic mapA <—1. Solving Eq.

have (11) under these two conditions, we have
s o -1-A <1—(1—s)A 12
L (1=e)A—y(A-1)+SA for j=i T—A Y —A (12
JXL iA for j+#i, This is the condition of stable homogeneous state of GCM.

The parameter satisfying the above inequality is the area be-
tween the two lines in Fig. 3.

. o _ _ Figure 3 also shows the numerical result of GCM. The
where A=[0f(x)]/9x|;=y. Let A=(1 e)A=v(A=1), " 4otsin the figure are the parameters that were controlled to
B=z/NA, and denoteM (X;) as the Jacobian matrix of Eq. stable homogeneous state. An interesting thing is that we got

(4) at the homogeneous state, we have an extra stable region that locates outside the theoretical
stable region. The reason is the following. Wheis large,
A+B B B ... B the system soon reaches a state where all sites are equal
before the controlling term is switched on. This state was
B AtB B .-~ B called coherent phase by Kanels). The sites in this state
M(X;)= B B A+B - -- B _ act as uncoupled maps. In this simple uncoupled case, our

controlling method is the same as those in R¢1S] and
[14]. Every site is controlled to the fixed point with no inter-
B B B .-+ A+B action from other sites.
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1. DISCUSSION AND CONCLUSION change eigenvalues of E) and Eq.(4) in (—1,1) to the
Numerical results show that our controlling method can'cJ'on outs!de Of(_ 1,1). Since many bounda_nes do not give
out large stimulation comparing to the coupling, our control-

control spatiotemporal chaos in different boundary cond|—Iing method works well in these boundary conditions.

tions such as fixed boundary condition, periodic boundary .
- ! . I : We successfully use a simple method to control symmet-
condition, etc. Since Jacobian matrix is slightly different for . .
ric coupled CML, asymmetric coupled CML, and globally

different boundary conditions, the eigenvalues vary for dif- : ey o
ferent boundary conditions. A useful tool to estimate eigen—COUpleOI map(GCM). Simple and sufficient conditions are

values is theSergorin disks theorenf16] in matrix theory. obtained for controlling these models to the homogeneous
- . . state.
It tells us that all the eigenvalues of a matrix locate in some
regions. We require that all the regions lie i {,1). This
requirement leads to an inequality just like inequalBy for ACKNOWLEDGMENT
successful controlling.
The Gergyorin disks theorem also shows that as long as a This work was carried out under Project No. 60074020
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